

ЗАКАЗАТЬ: СМАРТРЕЛЕ МД-2

Реле защиты и мониторинга

Смартреле МД-2

ПАСПОРТ ЮИПН 411711.077 ПС

Защищено Патентами РФ Разработчик – ООО «СибСпецПроект», г.Томск

1. ОБЩИЕ УКАЗАНИЯ

Настоящий паспорт является документом, устанавливающим правила эксплуатации Реле защиты и мониторинга типа Смартреле МД-2 (далее по тексту – реле).

Перед началом эксплуатации реле необходимо внимательно ознакомиться с настоящим паспортом.

При покупке реле проверяйте его комплектность, отсутствие механических повреждений, наличие штампов и подписей торгующих организаций в гарантийных талонах и в свидетельстве о приемке предприятия-изготовителя.

2.НАЗНАЧЕНИЕ

2.1 Реле предназначено для установки в цепях питания трехфазных электродвигателей и других электроустановок переменного тока промышленной частоты 50 Гц напряжением 230/400 или 400/690 В для их защиты от аварийных режимов работы.

При косвенном подключении через трансформаторы тока реле могут использоваться в электролиниях на любое напряжение.

- 2.2 Защитное отключение осуществляется путем размыкания или замыкания управляющего ключа (режим программируется потребителем), включаемого в цепь катушки управления контактора или автоматического выключателя.
 - 2.3 Реле обеспечивает функции защиты следующих видов:
- трехуровневую защиту по перегрузке по току с раздельной регулировкой выдержки времени на отключение;
 - защиту от недогрузки по току;
 - защиту от неполнофазного режима работы:
 - защиту от превышения допустимого дисбаланса токов;
 - защиту от частых пусков;
 - предпусковой контроль изоляции.

Функции реле могут расширяться подключением дополнительных устройств.

- 2.4 Реле изготавливается девяти номиналов: 2.5, 5, 12.5, 25, 50, 125, 250, 500 и 1250, соответствующих пределу уставки номинального тока в амперах.
- 2.5 Реле обеспечивает накопление и сохранение во внутренней энергонезависимой памяти:
 - графиков действующих значений токов (до 4 шт.) в фазах электродвигателя при запуске в интервале до 100 сек
 - графиков действующих значений токов (до 8 шт.) в фазах электродвигателя на момент аварийного отключения в интервале до 10 сек
 - ■информации о запусках, нормальных и аварийных отключениях электродвигателя, перерывах и отключениях электроснабжения с фиксацией даты и времени соответствующих событий и ряд других параметров.

Для получения и анализа накопленной информации предусмотрено подключение реле к персональному компьютеру (ПК).

2.6 Реле изготавливается в исполнении УХЛ категории 3 по ГОСТ 15150 и предназначено для работы при температуре окружающей среды от минус 40 до +40° С при относительной влажности до 98% при 25° С. Степень защиты корпуса реле — IP60.

Питание реле осуществляется от одной фазы сети переменного тока напряжением в пределах от 180 до 460 В частотой (50 \pm 2) Гц.

2.7 Реле предназначено для работы совместно с пультом управления ПУ-04С (рис.3б, изготавливается и поставляется отдельно по требованию заказчика), обеспечивающим считывание данных и регулировку уставок защиты по бесконтактному проводному каналу связи.

Один пульт может обслуживать любое количество реле.

2.8 Реле работает также совместно с пультом управления ПУ-04Л (рис.3а, изготавливается и поставляется отдельно по требованию заказчика), обеспечивающим считывание данных и регулировку уставок защиты по беспроводному оптическому каналу связи.

Один пульт может обслуживать любое количество реле.

2.9 Реле работает совместно с пультом управления Смарт ПУ-04 (рис.3в, изготавливается и поставляется по отдельному заказу), обеспечивающими отображение настроек реле, информации о текущих и аварийных режимах контролируемой электроустановки, а так же программирование уставок реле.

Пульт предназначен для стационарной установки в электрических шкафах совместно с одним реле. Один пульт обслуживает один прибор, с которым он совместно установлен.

Пульт изготавливается и поставляется по заказу потребителя только в комплекте с каждым экземпляром реле.

2.10 Реле работает совместно с Адаптером USB ЮИПН 203127.001, изготавливается и поставляется отдельно по требованию заказчика), обеспечивающим передачу накопленных данных в персональный компьютер ПК (ноутбук) и мониторинг работы электродвигателя на экране ПК в реальном масштабе времени, а так же программирование уставок реле от ПК.

Один Адаптер USB может обслуживать любое количество реле.

2.11 Реле работает совместно с мобильным устройством сбора информации УСИМ ЮИПН 460000.001 ПС (изготавливается и поставляется отдельно по требованию заказчика), обеспечивающим оперативный сбор данных с приборов МД-2 и их передачу в компьютер для последующей обработки и документирования.

Одно устройство может обслуживать любое количество реле.

- 2.12 Реле работает в системе радиального интерфейса удаленного сбора данных "СИРИУС" ЮИПН 421433.001. Порядок работы описан в паспорте на систему ЮИПН 421433.001 ПС.
- 2.13 Реле работает совместно с Адаптером Ethernet ЮИПН 203127.002, используемым для построения систем удаленного мониторинга и сбора информации о работе электроустановок с произвольным количеством объектов и обеспечивающим согласование протокола передачи данных приборов защиты/мониторинга электрооборудования и протокола передачи сети Ethernet.
 - 2.14. Реле работает совместно с Адаптером RS-485 ЮИПН 203127.004.

Адаптер RS-485 представляет собой устройство, позволяющее подключить прибор защиты к ПК или сети с интерфейсом RS-485.

Может использоваться при подключении к АСУ, работающих под управлением распространенных SCADA-систем.

2.15 Реле работает совместно с Адаптером беспроводной сети А2 ЮИПН 203127.005, используемым для построения беспроводных сетей удаленного мониторинга и сбора информации о работе электроустановок с произвольным количеством объектов (беспроводная сеть WL NET).

3.ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1 Пределы контролируемых токов:

Смартреле МД-2-	2.5	ОТ	0	до	20 A;
Смартреле МД-2-	5	ОТ	0	до	40 A;
Смартреле МД-2-	12.5	ОТ	0	до	100 A;
Смартреле МД-2-	25	ОТ	0	до	200 A;
Смартреле МД-2-	50	ОТ	0	до	400 A;
Смартреле МД-2-	125	ОТ	0	до	1 000 A;
Смартреле МД-2-	250	ОТ	0	до	2 000 A;
Смартреле МД-2-	500	ОТ	0	до	4 000 A;
Смартреле МД-2-	1250	ОТ	0	до	10 000 A.

3.2 Пределы регулирования режимных уставок по току отсечки ю:

```
Смартреле МД- 2- 2.5 от 0 до 12,5 A, шаг 0.05 A; 
Смартреле МД- 2- 5 от 0 до 25 A, шаг 0,1 A;
```

```
Смартреле МД- 2-12.5
                          от 0 до 62,5 А.
                                            шаг 0,3 А;
Смартреле МД- 2- 25
                                            шаг 0,5 А;
                          от 0 до 125 А,
Смартреле МД- 2- 50
                                    250 A.
                                                  1 A:
                          от 0 до
                                            шаг
Смартреле МД- 2- 125
                          от 0 до 625 А,
                                                  3 A:
                                            шаг
Смартреле МД- 2- 250
                          от 0 до 1 250 А,
                                                  5 A:
                                            шаг
Смартреле МД- 2- 500
                          от 0 до 2500 А, шаг
                                                 10 A;
Смартреле МД- 2-1250
                          от 0 до 6250 А шаг
                                                 25 A.
```

- 3.3 Время задержки срабатывания защитного отключения То по току отсечки lo регулируемое в пределах от 0 до 1.0 сек. с шагом 0.05 сек. Погрешность задержки срабатывания защитного отключения по току отсечки не более +0.05 сек.
 - 3.4 Пределы регулирования режимных уставок по току максимальной защиты Imax:

```
Смартреле МД- 2- 2.5
                                        5 А, шаг 0.02 А;
                           от 0 до
Смартреле МД- 2-
                           от 0 до
                                       10 А, шаг 0.04 А;
                   5
Смартреле МД- 2- 12.5
                                       25 А. шаг
                           от 0 до
                                                  0.1 A:
Смартреле МД- 2- 25
                           от 0 до
                                       50 А, шаг
                                                  0.2 A;
Смартреле МД- 2- 50
                                      100 А, шаг
                           от 0 до
                                                  0.4 A:
Смартреле МД- 2- 125
                                      250 А, шаг
                           от 0 до
                                                    1 A;
Смартреле МД- 2- 250
                           от 0 до
                                      500 А, шаг
                                                    2 A:
Смартреле МД- 2- 500
                           от 0 до 1000 А, шаг
                                                    4 A;
Смартреле МД- 2-1250
                           от 0 до 2500 А, шаг
                                                   10 A.
```

- 3.5 Время задержки срабатывания защитного отключения Tmax по току по току максимальной защиты Imax регулируемое в пределах от 0.5 до 60 сек. с шагом 0.5 сек.
- 3.6 Пределы регулирования режимных уставок по току перегрузки Inom, недогрузки Imin, дисбалансу токов Dmax:

```
от 0 до
                                      2.5 А, шаг 0.01 А;
Смартреле МД- 2- 2.5
Смартреле МД- 2- 5
                           от 0 до
                                        5 А, шаг 0.02 А;
Смартреле МД- 2- 12.5
                           от 0 до
                                     12.5 A, шаг 0.05 A;
Смартреле МД- 2- 25
                                      25 А, шаг 0.1 А;
                          от 0 до
Смартреле МД- 2- 50
                          от 0 до
                                      50 A, шаг 0.2 A;
Смартреле МД- 2- 125
                                      125 А, шаг 0.5 А;
                           от 0 до
Смартреле МД- 2- 250
                                     250 А, шаг
                                                  1 A:
                           от 0 до
Смартреле МД- 2- 500
                                     500 А, шаг
                                                  2 A;
                           от 0 до
Смартреле МД- 2-1250
                          от 0 до 1250 А, шаг
                                                  5 A.
```

- 3.7 Время задержки срабатывания защитного отключения Tnom по току перегрузки Inom, недогрузки Imin, дисбалансу токов Dmax регулируемое в пределах от 1 до 250 сек. с шагом 1 сек.
- 3.8 Время задержки срабатывания защитного отключения при пуске электродвигателя Tn регулируемое в пределах от 1 до 250 сек. с шагом 1 сек.
- 3.9 Время задержки срабатывания защитного отключения при обрыве фазы фиксировано и составляет 3 сек.
- 3.10 Время задержки включения при перерыве электроснабжения Тсз регулируемое в пределах от 1 до 250 сек. с шагом 1 сек.
- 3.11 Время задержки на автоматический повторный пуск Тпв регулируемое в пределах от 1сек. до 180 минут.
- 3.12 Число попыток автоматического повторного пуска Nпв регулируемое в пределах от 1 до 250.
- 3.13 Время запрета на повторное включение Тзпв регулируемое в пределах от 1сек. до 180 минут.
- 3.14 Управляющий контакт реле коммутирует электрическую цепь переменного тока от 0.01 до 1 А при напряжении до 460 В.

- 3.15 Управляющий контакт реле допускает перегрузку до 25 А в течение времени не более 0.5 сек.
- 3.16 Питание реле осуществляется от сети переменного тока напряжением в пределах от 180 до 460 В частотой (50 ± 2) Гц.
 - 3.17 Мощность, потребляемая реле от сети не более 0.6 Вт.
 - 3.18 Габаритные размеры реле не более 35 х 95 х 42 мм (без датчиков тока).
- 3.19 Длина кабеля от корпуса реле до датчиков тока 1100 ± 100 мм с возможностью наращивания потребителем до 20 м.
- 3.20 Габаритные размеры датчиков тока (внутренний х внешний диаметр х высота, мм):

```
Смартреле МД-2- 2.5 - 10 x 40 x 15;

Смартреле МД-2- 5 - 10 x 40 x 15;

Смартреле МД-2- 12.5 - 10 x 40 x 15;

Смартреле МД-2- 25 - 10 x 40 x 15; *

Смартреле МД-2- 50 - 24 x 54 x 18;

Смартреле МД-2- 125 - 24 x 54 x 18;

Смартреле МД-2- 250 - 42 x 76 x 20;

Смартреле МД-2- 500 - 42 x 76 x 20;

Смартреле МД-2- 1250 - 65 x 112 x 22.
```

* *Примечание*: по требованию заказчика может комплектоваться датчиками типоразмера 24 x 54 x 18 мм.

3.21 Масса реле:

```
Смартреле МД-2- 2.5, МД-2- 5, МД-2- 12.5 - не более 0,25 кг; Смартреле МД-2- 25, МД-2- 50, МД-2- 125 - не более 0,35 кг; Смартреле МД-2- 250, МД-2- 500 - не более 0,55 кг; Смартреле МД-2- 1250 - не более 0.95 кг.
```

3.22 Средний срок службы реле - не менее 5 лет.

4. КОМПЛЕКТНОСТЬ

В комплект поставки входят:

Реле	- 1 шт.
Паспорт на реле	- 1 шт.
Пульт управления ПУ-04Л	- 1 шт. *
Пульт управления ПУ-04С	- 1 шт. *
Пульт управления Смарт ПУ-04	- 1 шт. *
Адаптер USB ЮИПН 203127.001	- 1 шт.*
Адаптер Ethernet ЮИПН 203127.002	- 1 шт.*
Устройство УСИМ ЮИПН 460000.001 ПС	- 1 шт.*
Адаптер RS-485 ЮИПН 203127.004	- 1 шт.*
Адаптер беспроводной сети А2 ЮИПН 203127.005	- 1 шт.*

Примечание:

*Дополнительные устройства, входящие в комплект поставки по требованию заказчика, изготавливаются и поставляются отдельно.

5. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

5.1 Общий вид реле, расположение его органов индикации показаны на рис.1.

- 5.2 Габаритные и установочные размеры реле показаны на рисунке 2.
- 5.3 Общий вид, габаритные размеры пультов управления ПУ-04Л, ПУ-04С, Смарт ПУ-04 показаны на рисунке 3.
- 5.4 Схема включения реле в систему управления электродвигателя показана на рисунке 4.
- 5.5 Реле состоит из электронного блока (рис.1а) с шестью винтовыми клеммами 1 6 для подключения и блока датчиков тока (рис.1б), соединенных между собой двухпроводной линией 20 с разъемным соединением посредством двух клемм 4 и 5. Посредством трех датчиков тока 16, 17, 18 реле осуществляет контроль токов, протекающих в трех фазах питания контролируемого электродвигателя.
- 5.6 Электронный блок реле обрабатывает данные, поступающие от блока датчиков, о значениях тока в фазах электродвигателя, сравнивает эти значения с заданными уставками и выдает команду на управления исполнительным контактом реле, обеспечивающим отключение электродвигателя в аварийном режиме.
- 5.7 Питание реле обеспечивается наличием переменного напряжения сети от 180 до 460 В между его клеммами 1 "Ф" и 3 "Н".
- 5.8 На передней панели реле расположены семь световых индикаторов 7 13 для отображения режима его работы, бесконтактный разъем 15 "X1", предназначенный для подключения пультов и других внешних устройств (цифровой вход/выход) и оптический инфракрасный (ИК) приемопередатчик 14.
- 5.9 Индикация нормального режима электродвигателя по току осуществляется индикатором 7 "РАБОТА". Если двигатель отключен, индикатор "РАБОТА" светится непрерывно. Если двигатель включен, индикатор работает в прерывистом режиме (мигает). Цепь управляющего ключа реле (клеммы 1 "Ф" и 2 "К") при этом замкнута.
- 5.10 При выходе режима по току за пределы уставок реле переходит в режим АВАРИЯ, индикатор "РАБОТА" гаснет и включается один из индикаторов 8 11, указывающих причину аварии, с одновременным размыканием цепи управляющего ключа (клеммы 1 "Ф" и 2 "К"), что приводит к отключению контактора КМ и электродвигателя.
- 5.11 Деблокировка защиты и возврат реле в исходное состояние, при необходимости, осуществляется снятием напряжения сетевого питания с реле на время более 1 сек.

Для обеспечения возможности деблокировки защиты в цепи питания реле может быть установлен выключатель SF (рис.4).

- 5.12. Реле оборудовано встроенной схемой контроля сопротивления утечки обмоток двигателя на "землю". При снижении сопротивления ниже 360 КОм реле размыкает управляющий ключ, блокируя возможность запуска двигателя. При этом на панели реле включается индикатор 12 «Утечка»
 - 5.13. Функция контроля утечки действует только при отключенном электродвигателе.

Для активации функции предпускового контроля изоляции необходимо соединить клемму 6 реле с одной из фаз электродвигателя (цепь A на рис 4). При отсутствии указанной цепи функция предпускового контроля изоляции не действует (отключена).

5.14 Пульт управления ПУ-04Л (рис.3а) с автономным питанием обеспечивает дистанционное считывание информации от реле и ее отображение на экране цифрового дисплея, а также обеспечивает программирование уставок защит.

Связь пульта с реле осуществляется оптическому беспроводному каналу связи, который обеспечивается инфракрасным приемопередающими элементами 6,7. Дальность связи находится в пределах от 5 до 20 см.

5.15 Пульт управления ПУ-04С (рис.3б) с автономным питанием обеспечивает дистанционное считывание информации от реле и ее отображение на экране цифрового дисплея, а также обеспечивает программирование уставок защит. Реле и пульт обмениваются информацией по каналу связи, который обеспечивается шлейфом 8 с бесконтактным зондом 10, обеспечивающим электробезопасность при работе.

Один пульт может работать с любым количеством реле.

5.16 Пульт управления Смарт ПУ-04 (рис.3в) предназначен для стационарной установки в электрических шкафах совместно с реле. Один пульт обслуживает один прибор, с которым он совместно установлен. Пульт обеспечивает отображение данных с

реле о текущих и аварийных режимах контролируемой электроустановки, а так же программирование уставок реле.

Пульт изготавливается и поставляется по заказу потребителя только в комплекте с конкретным экземпляром реле. Порядок работы с пультом описан в его эксплуатационных документах.

5.17 Характеристики защитного отключения.

Пределы срабатывания по току защитного отключения определяются значениями режимных уставок:

■ Inom - порог срабатывания защиты по току перегрузки. При превышении тока одной из фаз значения Inom происходит аварийное отключение через интервал времени, определяемый уставкой Tnom.

Если установлено значение Imax=0 - защита не действует (отключена).

■ Imax - порог срабатывания по току максимальной защиты. При превышении тока одной из фаз значения Imax происходит аварийное отключение через интервал времени, определяемый уставкой Tmax.

Если установлено значение Imax=0 - защита не действует (отключена).

■ Io - порог срабатывания защиты по току отсечки. При превышении тока одной из фаз значения Io происходит аварийное отключение через интервал времени, определяемый значением уставки To.

Если установлено значение lo=0 - защита не действует (отключена).

■ Imin - порог срабатывания защиты по току недогрузки. При уменьшении тока всех трех фаз ниже значения Imin происходит аварийное отключение через интервал време-

- 7 -

ни, определяемый значением уставки Tnom.

Если установлено значение Imin=0 - защита не действует (отключена).

■ Dmax - порог срабатывания защиты по дисбалансу токов. При превышении дисбаланса токов значения Dmax происходит аварийное отключение через интервал времени, определяемый значением уставки Tnom.

Если установлено значение Dmax=0 - защита не действует (отключена).

Для предотвращения преждевременного срабатывания защитного отключения при запуске электродвигателя предусмотрено регулируемое значение уставки **Тп** – времени задержки срабатывания защитного отключения при пуске в секундах. Блокирует срабатывание защиты по току перегрузки Inom, току максимальной защиты Imax и дисбалансу Dmax на время, определяемое значением уставки Tп. Не действует на другие защиты.

При каждом аварийном отключении электродвигателя в области памяти реле журнале аварийных отключений – регистрируются дата и время аварийного отключения, причина аварийного отключения, значения токов в фазах электродвигателя на момент аварийного отключения.

В журнале аварийных отключений сохраняется информация о четырех последних по времени аварийных отключениях.

- 5.18 При каждом включении, нормальном или аварийном отключении электродвигателя в области памяти реле журнале событий регистрируются вид события, дата и время события и его параметры:
 - ПУСК запуск электродвигателя Фиксируются:
 - дата и время.

- СТОП нормальное отключение электродвигателя Фиксируются:
 - дата и время.
- РЕЖИМ выход электродвигателя на режим, заданный уставками тока.

Фиксируются:

- дата и время события;
- Іп пусковой ток электродвигателя.
- -Тв– интервал времени с момента пуска до момента выхода электродвигателя на режим.
- АВАРИЯ аварийное отключение электродвигателя.

Фиксируются:

- дата и время аварийного отключения;
- причина аварийного отключения;
- la, lb, lc значения токов в фазах электродвигателя на момент аварийного отключения. Для последнего по времени аварийного отключения регистрируется график значений тока в интервале времени 10 секунд до отключения.

В журнале событий регистрируются также параметры:

- НО количество нормальных отключений электродвигателя (до 65536):
- АО количество аварийных отключений электродвигателя (до 255);
- НАРАБОТКА время наработки электродвигателя (до 65536 часов с дискретностью 1 минута).
- 5.19 При каждом отключении и включении оперативного напряжения питания реле Uc журнале событий регистрируются события:
- ОТКЛ.П отключение оперативного напряжения питания реле (фиксируются дата и время):
- ВКЛ.П включение оперативного напряжения питания реле (фиксируются дата и время);
- ПЭСН перерыв электроснабжения кратковременное (менее 0.5 сек.) отключение оперативного напряжения питания реле (фиксируются дата, время и продолжительность перерыва).

Объем памяти журнала событий составляет 200 записей. При заполнении журнал работает по принципу кольцевого буфера – последнее по времени событие помещается на место первого.

Просмотр журнала событий возможен только с помощью Адаптера USB и ПК (рис.6-8).

- 5.20 При подаче напряжения питания реле позволяет обеспечить отложенный пуск электродвигателя т.е. задержку запуска на время, задаваемое значением уставки **Тсз** время задержки самозапуска в секундах. При включении питания управляющий ключ реле остается разомкнутым в течение интервала времени **Тсз**.
- 5.21 При каждом нормальном отключении реле позволяет обеспечить запрет последующего запуска электродвигателя на время, задаваемое значением уставки Тзпв время задержки повторного включения. В течение интервала времени Тзпв управляющий ключ реле остается разомкнутым, предотвращая преждевременный запуск.
- 5.22 Реле позволяет обеспечить автоматический сброс(возврат) защиты путем задания значений уставок:

- Тпв- время в секундах до автоматического сброса защиты;
- Nпв- число программируемых циклов автоматического сброса защиты.

Если установлено значение **Nпв**=0, то эта функция не действует, сброс защиты может осуществляться только снятием с реле напряжения сетевого питания или по команде с пульта. Может принимать символическое значение ">>>", соответствующее бесконечному значению.

5.23 Реле номиналов МД-2-2.5, МД-2-5 могут подключаться к высоковольтному электродвигателю косвенно через трансформаторы тока. Датчики тока устанавливаются во вторичной цепи трансформаторов тока в соответствии с одной из схем, приведенных на рис.5.

Для обеспечения прямого отсчета контролируемого тока в этих моделях предусмотрена возможность установки коэффициента трансформации $\text{KTp} = (I_1 / I_2),$

где: І1 – номинальный первичный ток трансформатора;

l₂ – номинальный вторичный ток трансформатора.

5.24 Подключение реле к ПК через адаптер USB (рис.6) позволяет осуществлять мониторинг работы электроустановки в реальном масштабе времени на экране ПК (рис.7) и просматривать журнал аварийных отключений (рис.8).

Порядок работы с адаптером USB и прилагаемой к нему программой описан в паспорте на адаптер USB ЮИПН 203127.001 ПС.

6. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 6.1 Во избежание поражения электрическим током все виды работ по монтажу и подключению реле допускается производить только при полном снятии напряжения в сети.
 - 6.2 Запрещается эксплуатация реле во взрывоопасных помещениях.
- 6.3 Не допускается длительное превышение тока в цепи управления реле сверх допустимого (1A), что может привести к выходу управляющего ключа реле из строя. В связи с этим при работе с контакторами V-VI габарита рекомендуется устанавливать в схему управления промежуточное реле.
- 6.4 Запрещается установка датчиков тока реле на не изолированные провода (шины). Не рекомендуется установка датчиков в непосредственной близости от контактных соединений, которые могут нагреваться во время работы и привести к перегреву датчиков.

7.РАЗМЕЩЕНИЕ И МОНТАЖ

- 7.1 Реле может устанавливаться в силовых шкафах совместно с другим пусковым электрооборудованием. Для крепления в его корпусе предусмотрены два крепежных отверстия и крепление на DIN-рейку.
- 7.2 При затруднениях при установке датчиков (недостаточный внутренний диаметр) следует учитывать, что датчики тока могут устанавливаться в любом месте электрической цепи питания электроустановки, например, до или после вводного автоматического выключателя, до или после вводных клемм контактора. По желанию заказчика реле могут комплектоваться датчиками большего размера.

Положение датчика на токоведущем проводе может быть произвольным и не влияет на работу реле.

7.3 Реле и его датчики при необходимости могут устанавливаться в раздельных шкафах (например, датчики – в силовом шкафу, реле – в шкафу автоматики).

В этом случае может потребоваться увеличение длины соединения между датчиками тока и корпусом реле.

Потребитель имеет право самостоятельно нарастить соединительную линию, если это необходимо по техническим соображениям.

Допускается увеличение длины соединения до 20 м однотипным проводом (ШВВП 2*0.5) или витой парой проводов сечением 0,5-0.75 мм кв. с соблюдением исходной полярности соединения.

Места соединения должны быть надежно изолированы от других токоведущих частей и земли.

При последующих заказах по требованию заказчика возможно изменение длины соединения при изготовлении прибора.

7.4 Подключение реле производится в соответствии со схемой рис.4. Возможны другие варианты подключения, реле которые разрабатываются самим потребителем в зависимости от условий применения.

8.ПОРЯДОК РАБОТЫ

- 8.1 При подаче напряжения сетевого питания реле готово к работе.
- 8.2 При нормальной работе электроустановки светится желтый индикатор "РАБОТА" реле.
- 8.3 В случае выхода режима за пределы уставок реле произведет защитное отключение, индикатор "РАБОТА" гаснет, включается один из индикаторов аварий.
- 8.4 Если произошло отключение по обрыву фазы, то мигающие индикаторы [A], [B], [C] указывают отсутствующую фазу.
- 8.5 Если необходимо проконтролировать текущий режим электродвигателя, выяснить причину аварийного отключения или изменить режимные уставки, воспользуйтесь одним из пультов управления или управляющей программой на ПК (ноутбуке).
 - 8.6 Порядок работы с пультом ПУ-04С.
- 8.6.1 Проверьте состояние элементов питания пульта, для чего нажмите и отпустите кнопку "ПИТАНИЕ ".

На экране дисплея должно появиться сообщение:

Пульт 04-Сервис

Если изображение не появляется или недостаточно контрастно, то это свидетельствует о чрезмерном разряде элемента питания пульта и его необходимо заменить.

Не нужно удерживать кнопку "ПИТАНИЕ" в нажатом состоянии во время сеанса работы. По окончании работы питание пульта отключается автоматически через 3-4 секунды.

- 8.6.2. Соедините пульт с реле с помощью шлейфа, подключив приемный зонд к гнезду "X1" реле, нажмите и отпустите кнопку "ПИТАНИЕ".
- Знак * в правом верхнем углу индикатора свидетельствует о наличии связи между реле и пультом.
- 8.6.3 Отображаемая информация размещается на тринадцати страницах дисплея, последовательное переключение которых осуществляется с помощью кнопок "ВЫБОР СТРАНИЦЫ" в прямом или обратном порядке (нумерация страниц условная).
- 8.6.4 На странице №1 дисплея отображается тип и номинал реле, текущее состояние электродвигателя: СТОП (двигатель отключен), РАБОТА (режим в норме) или АВАРИЯ (произошло аварийное отключение), показания встроенных часов реле текущая дата и время, а также идентификатор режима работы ключа управления: [НЗК] нормально замкнутый контакт, работающий на размыкание при аварийном отключении или [НРК] нормально разомкнутый контакт, работающий на замыкание при аварийном отключении.
- 8.6.5 На странице №2 отображаются текущие значения токов фаз Ia, Ib, Ic и дисбаланса токов Di электродвигателя.

В режиме "РАБОТА" или "АВАРИЯ" также отображаются значения пускового тока Іп и времени выхода электродвигателя на режим Тв.

- 8.6.6 На странице №3 отображаются значения уставок Io, To, Imax, Tmax, Inom, Tnom, Imin, Dmax
 - 8.6.7 На странице №4 отображается значения уставок Тп, Тсз, Тпв, Тзпв, Nпв.
- 8.6.8 На страницах №5-8 дисплея отображаются параметры четырех последних по времени аварийных отключений: дата и время отключения, значения токов в фазах электродвигателя на момент аварийного отключения и причина аварии.

Отключения пронумерованы условно:

- n-0 последнее по времени аварийное отключение;
- n-1- отключение, предшествующее по времени отключению n-0 и т.д.

Если соответствующего отключения не было, то отображается сообщение HET ДАННЫХ.

- 8.6.9 На странице №10 дисплея отображаются статистические данные о работе электродвигателя с указанной даты:
 - НО число нормальных отключений;
 - АО число аварийных отключений;
 - НАРАБОТКА значение наработки электродвигателя в часах и минутах.
 - 8.6.10 Программирование реле.
 - 8.6.10.1 Произведите считывание информации из реле в соответствии с п.8.6.2.
- 8.6.10.2 Для перехода в режим программирования нажмите однократно кнопку "ВЫБОР ПАРАМЕТРА" пульта на экране дисплея отображается меню подпрограмм:
- ЗАЩИТА корректировка уставок защиты Io, To, Imax, Tmax, Inom, Tnom, Imin, Dmax;
 - ЧАСЫ корректировка часов и календаря реле;
 - ПУСК корректировка уставок Тп, Тсз, Тпв, Тзпв, Nпв;
- ВЫХОД установка режима работы ключа управления ([НЗК] нормально замкнутый контакт, работающий на размыкание при аварийном отключении или [НРК] нормально разомкнутый контакт, работающий на замыкание при аварийном отключении);
- ОЧСТАТ очистка памяти аварийных отключений и журнала событий, деблокировка защиты;
- Inc корректировка уставки тока предупредительной сигнализации Inc (не используется в Смартреле МД-2);
 - СБРОС сброс (деблокировка) защиты по команде с пульта;
- Ктр установка коэффициента трансформации (только для Смартреле МД-2-2.5, Смартреле МД-2-5);
- 8.6.10.3 Нажатием кнопок «ВЫБОР ПАРАМЕТРА» установите маркер «>>» на выбранный раздел меню (например, ЗАЩИТА).
- 8.6.10.4 Нажмите повторно кнопку "ВЫБОР ПАРАМЕТРА" на экране дисплея отображается обозначение и текущее значение выбранного параметра, например:

Imax

500 500

где 500 - текущее значение уставки Ітах.

- 8.6.10.5 Нажатием кнопок «ВЫБОР ПАРАМЕТРА» установите новое значение параметра (отображается справа). Для ускоренного изменения параметра удерживайте кнопку «ВЫБОР ПАРАМЕТРА» в нажатом состоянии. Запись закончена, когда значение параметра, отображаемое слева, совпадет с установленным.
- 8.6.10.6 Повторным нажатием кнопки "ВЫБОР ПАРАМЕТРА" выберите следующий параметр, повторите п. 8.6.10.2. для установки других параметров.
- 8.6.10.7 Для выхода из режима программирования нажмите и отпустите кнопку "ПИТАНИЕ".
 - 8.6.10.8 При необходимости повторите требования п.8.6.10.
- 8.6.10.9 Для очистки журнала событий и памяти аварийных отключений выберите в меню подпрограмм (п.8.6.10.2) раздел ОЧСТАТ.

Нажмите повторно кнопку "ВЫБОР ПАРАМЕТРА" и дождитесь сообщения ИСПОЛНЕНО.

8.6.10.10 Для выполнения сброса (деблокировки) защиты выберите в меню подпрограмм (п.8.6.10.2) раздел СБРОС.

Нажмите повторно кнопку "ВЫБОР ПАРАМЕТРА" и дождитесь сообщения ИСПОЛНЕНО.

- 8.6.10.11 Для выхода из режима программирования нажмите и отпустите кнопку "ПИТАНИЕ".
- 8.6.10.12 По окончании работы отключите приемный зонд пульта от реле через 3-4 сек. пульт отключится автоматически.
 - 8.7 Порядок работы с пультом ПУ-04Л.
- 8.7.1 Проверьте состояние элементов питания пульта, для чего нажмите и отпустите кнопку "ПИТАНИЕ".

На экране дисплея должно появиться сообщение:

Пульт 04-Сервис

Если изображение не появляется или недостаточно контрастно, то это свидетельствует о чрезмерном разряде элемента питания пульта и его необходимо заменить.

Не нужно удерживать кнопку "ПИТАНИЕ" в нажатом состоянии во время сеанса работы. По окончании работы питание пульта отключается автоматически через 3-4 секунды.

8.7.2 Поднесите пульт к реле на расстояние 5 - 30 см, совместив ось ИК-излучателя реле и ИК-приемника пульта, нажмите кратковременно кнопку "ПИТАНИЕ".

Знак * в правом верхнем углу индикатора свидетельствует о том, что информация считана.

- 8.7.3 Последующий порядок работы с пультом ПУ-04Л аналогичен работе с пультом ПУ-04С.
 - 8.8 Работа с пультом управления Смарт ПУ-04.

Работа с пультом аналогична работе с пультом ПУ-04Л. Перед началом работы пульт нужно установить в соответствии с рисунком 2 из паспорта на Смарт ПУ-04 ЮИПН 411711.030 ПС.

- 8.9 Порядок работы с персональным компьютером ПК (ноутбуком) описан в паспорте на Адаптер USB ЮИПН 203127.001 ПС, в паспорте на систему радиального интерфейса удаленного сбора данных «СИРИУС» ЮИПН 421433.001 ПС.
- 8.10 Порядок работы с устройством УСИМ описан в паспорте на Устройство Сбора Информации Мобильное ЮИПН 460000.001 ПС.
- 8.11 Порядок работы с адаптером RS-485 описан в паспорте на Адаптер RS-485 ЮИПН 203127.004 ПС.
- 8.12 Порядок работы с адаптером Ethernet описан в паспорте на Адаптер Ethernet ЮИПН 203127.002 ПС.

8.13 Порядок работы с адаптером А2 описан в паспорте на Адаптер беспроводной сети А2 ЮИПН 203127.005 ПС.

9.ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

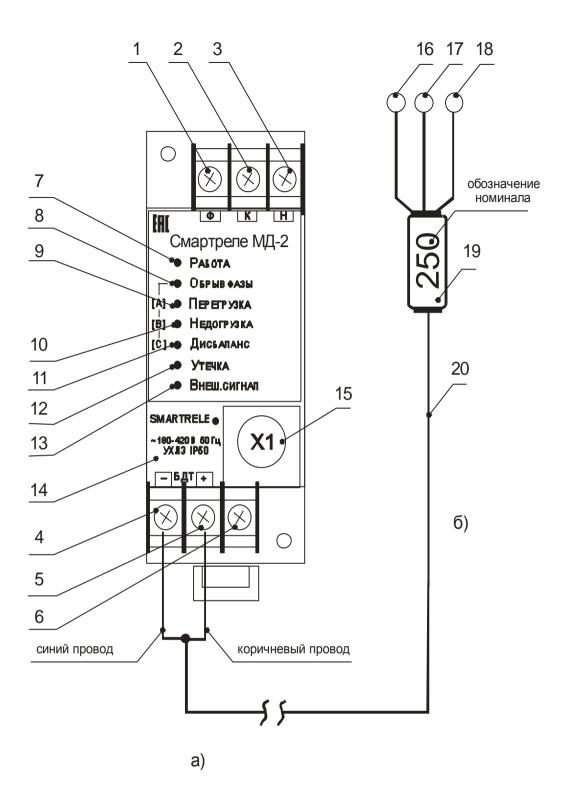
В процессе эксплуатации реле не требует технического обслуживания.

10. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует нормальную работу реле в течение 36 месяцев с момента поставки при условии соблюдения потребителем правил эксплуатации.

Изготовитель оставляет за собой право вносить в конструкцию изделия изменения, не ухудшающие его технические характеристики.

11. МАРКИРОВКА


Маркировка наименования реле «Смартреле МД-2» нанесена на его лицевой панели. Маркировка номинала реле нанесена на корпусе блока датчиков тока. Серийный номер реле нанесен на его задней панели.

12.СВЕДЕНИЯ О СОДЕРЖАНИИ ДРАГОЦЕННЫХ МЕТАЛЛОВ

Реле драгоценных металлов и сплавов не содержит.

13. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Реле ти	та Смар [.]	греле МД	l -2		заводской	N	N			
выпускаемое эксплуатации		3425-001	-79200647-20)14, пр	оверено	И	признано	годным	1	
Штамп ОТК_	подпись ли	ц, ответствені	ных за приемку							

а) - электронный блок реле

б) - блок датчиков тока реле

Рисунок 1 - общий вид реле

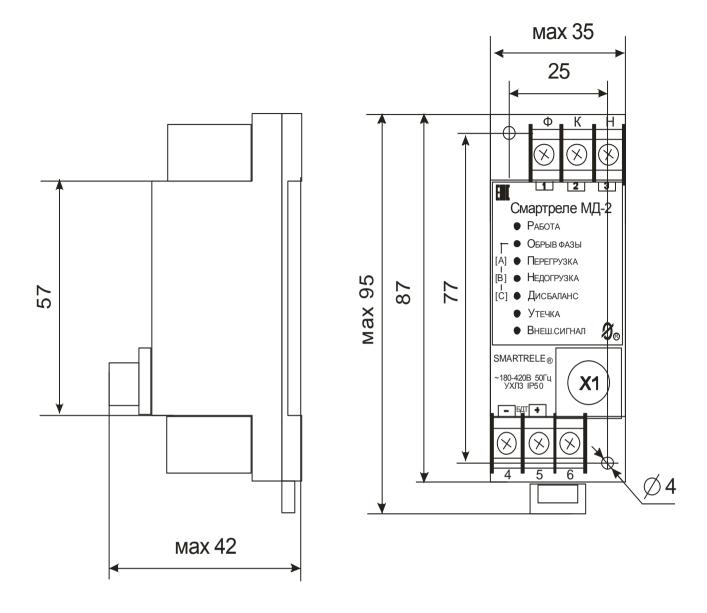


Рисунок 2 – габаритные и установочные размеры электронного блока реле

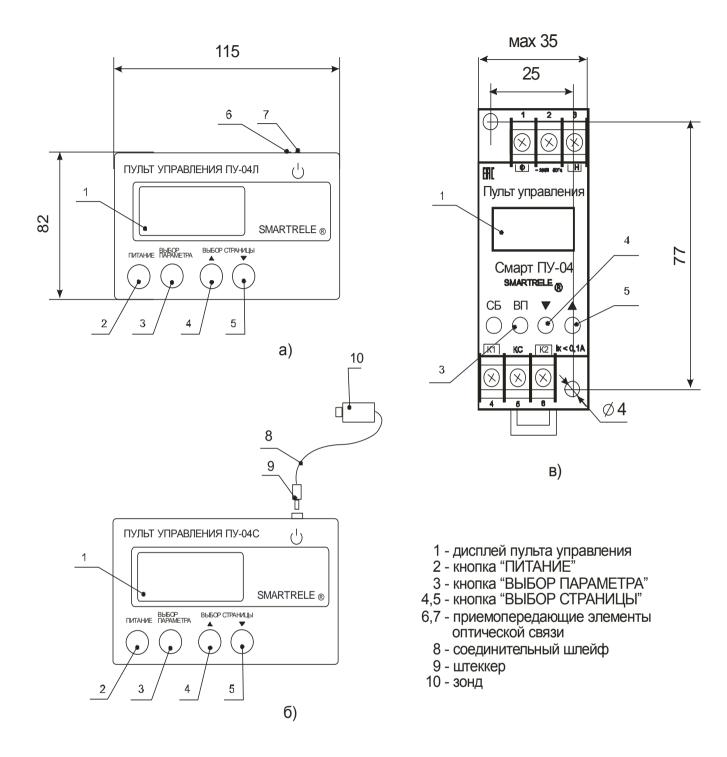


Рисунок 3 – общий вид пультов, расположение их органов индикации и управления

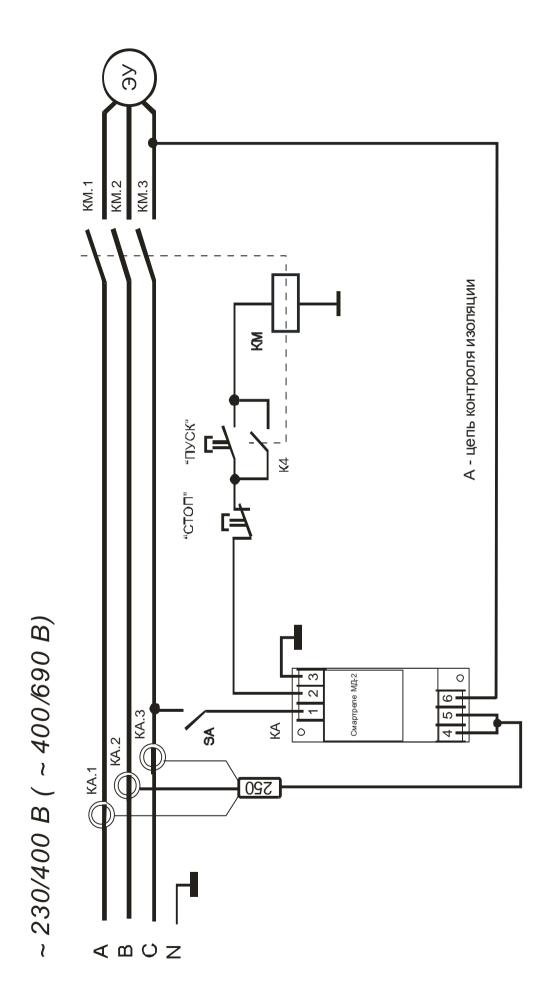
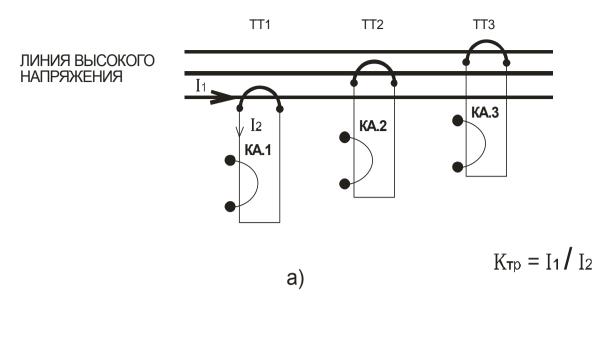



Рисунок 4 - типовая схема включения реле в систему управления электродвигателя

Примечание: Датчики тока реле могут устанавливаться на шины питания A, B, C после управляющего контактора КМ

ЛИНИЯ ВЫСОКОГО НАПРЯЖЕНИЯ КА.2 КА.3

ТТ1, ТТ2, ТТ3 - унифицированные трансформаторы тока КА.1, КА.2, КА.3 - датчики тока Смартреле МД-2

Рисунок 5 - косвенное подключение датчиков тока Смартреле МД-2-2.5, МД-2-5 к электролинии

- а) с тремя трансформаторами тока
- б) с двумя трансформаторами тока

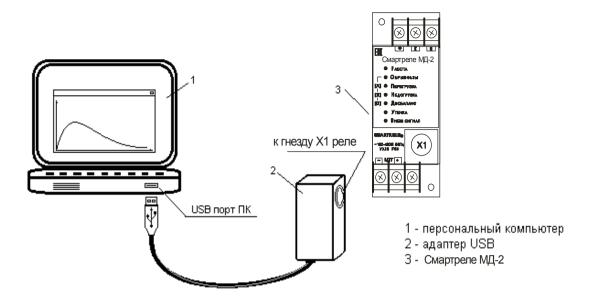


Рисунок 6 – соединение Смартреле МД-2 с ПК при помощи адаптера USB

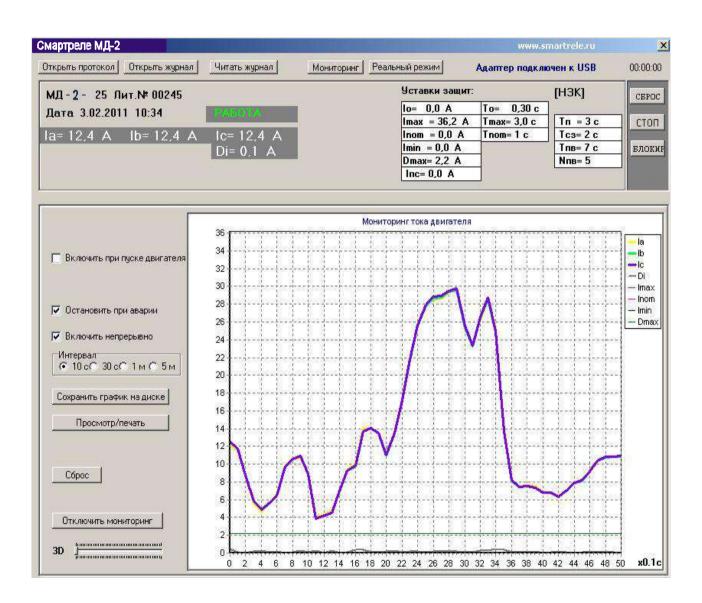


Рисунок 7 - отображение мониторинга работы двигателя, оснащенного Смартреле МД-2, в реальном времени

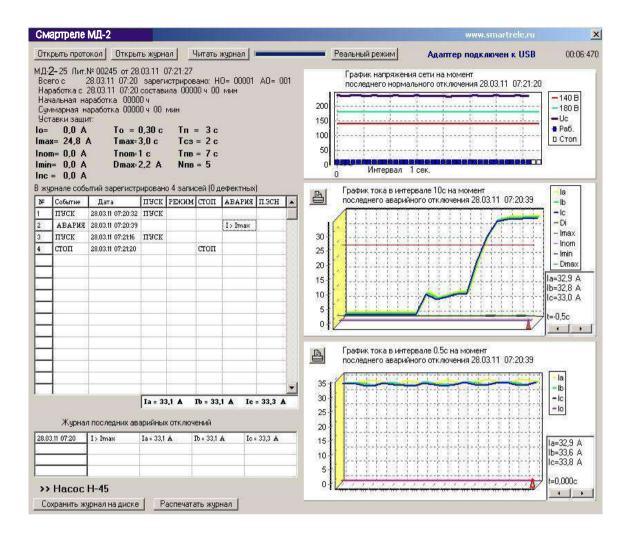


Рисунок 8 - отображение журнала событий Смартреле МД-2 на экране ПК