

ЗАКАЗАТЬ: СМАРТРЕЛЕ РЗ

Реле защиты трехфазных электроустановок

Смартреле P3-5, P3-25, P3-50, P3-250, P3-500, P3-900

ПАСПОРТ ЮИПН 411711.072-01 ПС

Защищено Патентами РФ Разработчик – ООО «СибСпецПроект», г.Томск

Томск 2016

1.ОБЩИЕ УКАЗАНИЯ

- 1.1 Настоящий паспорт является документом, устанавливающим правила эксплуатации Реле защиты электроустановок исполнения Смартреле РЗ (далее реле).
- 1.2 Перед началом эксплуатации реле необходимо внимательно ознакомиться с настоящим паспортом.
- 1.3 При покупке реле проверяйте его комплектность, отсутствие механических повреждении, наличие штампов и подписей торгующих организации в гарантийных талонах и в свидетельстве о приемке предприятия изготовителя.

2. НАЗНАЧЕНИЕ

- 2.1 Реле предназначено для установки в цепях питания трехфазных электродвигателей и других электроустановок переменного тока промышленной частоты 50 Гц номинальным напряжением ~230/400 или ~400/690 В для их защиты от аварийных режимов работы.
- 2.2 Реле осуществляет контроль токов в трех фазах обслуживаемой электроустановки и при выявлении аварийных режимов работы отключает ее. Отключение происходит в следующих аварийных ситуациях:
 - при перегрузке по току;
 - при обрыве любой фазы.

Защитное отключение осуществляется путем размыкания управляющего контакта реле, включаемого в цепь катушки электромагнитного пускателя (контактора).

- 2.3 Реле изготавливается шести номиналов: 5, 25, 50, 250, 500 и 900, соответствующих верхнему пределу регулирования уставок защиты по току в амперах.
- 2.4 Реле изготавливается в исполнении УХЛ категории 3 по ГОСТ 15150 и предназначено для работы при температуре окружающей среды от –40 до +40° С при относительной влажности до 95%. Степень защиты корпуса реле IP60.
- 2.5 Реле предназначено для работы совместно с пультом управления ПУ-02Л (выпускается взамен снятых с производства пультов ПУ-02М) (рис.3а, изготавливается и поставляется по отдельному заказу), обеспечивающими считывание данных с реле о текущих и аварийных режимах контролируемой электроустановки, а так же программирование уставок реле по беспроводному оптическому каналу связи. Реле не обслуживается пультами ПУ-02, ПУ-02М других производителей.

Один пульт может обслуживать любое количество реле.

2.6 Реле работает также с пультом управления ПУ-02С (рис.3б, изготавливается и поставляется по отдельному заказу), обеспечивающими считывание данных с реле о текущих и аварийных режимах контролируемого электродвигателя, а так же программирование уставок реле по проводному бесконтактному каналу связи.

Один пульт может обслуживать любое количество реле.

2.7 Реле работает совместно с пультом управления Смарт ПУ-04 (рис.3в, изготавливается и поставляется по отдельному заказу), обеспечивающими отображение настроек реле, информации о текущих и аварийных режимах контролируемой электроустановки, а так же программирование уставок реле.

Пульт предназначен для стационарной установки в электрических шкафах совместно с одним реле. Один пульт обслуживает один прибор, с которым он совместно установлен.

Пульт изготавливается и поставляется по заказу потребителя только в комплекте с каждым экземпляром реле.

2.8 Реле работает совместно с Адаптером USB ЮИПН 203127.001, обеспечивающим соединение реле с персональным компьютером (ПК) с целью получения данных с реле о текущих и аварийных режимах контролируемой электроустановки и программирования уставок реле.

Один Адаптер USB может обслуживать любое количество реле.

2.9 Реле работает совместно с мобильным устройством сбора информации УСИМ (флэш-память) ЮИПН 460000.001,обеспечивающим оперативный сбор данных о работе электроустановки, оборудованной приборами защиты (в том числе, Смартреле РЗ) и передачу их в персональный компьютер для последующей обработки и документирования.

Одно устройство может обслуживать любое количество реле.

- 2.10 Реле может быть включено в систему удаленного сбора данных о работе электроустановок «СИРИУС» ЮИПН 421433. Порядок работы системы описан в паспорте на систему ЮИПН 421433.001 ПС.
- 2.11 Реле работает совместно с адаптером Ethernet ЮИПН 203127.002, используемым для построения систем удаленного мониторинга и сбора информации о работе электроустановок с произвольным количеством объектов на базе сети Ethernet.
 - 2.12 Реле работает совместно с Адаптером RS-485 ЮИПН 203127.004.

Адаптер RS-485 представляет собой устройство, позволяющее соединить реле с ПК посредством интерфейса RS-485.

Адаптер может использоваться для подключения реле к автоматизированным системам, работающим под управлением распространенных SCADA-систем.

2.13 Реле работает совместно с Адаптером беспроводной сети А2 ЮИПН 203127.005, используемым для построения беспроводных сетей удаленного мониторинга и сбора информации о работе электроустановок с произвольным количеством объектов (беспроводная сеть WL_NET).

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1 Пределы контролируемых токов в каждой из трёх фаз электроустановки:

```
Смартреле P3-5 от 0 до 40 A
Смартреле P3-25 от 0 до 200 A
Смартреле P3-250 от 0 до 2000 A
Смартреле P3-250 от 0 до 2000 A
Смартреле P3-500 от 0 до 4000 A
Смартреле P3-900 от 0 до 9999 A
```

3.2 Пределы регулирования уставки по току перегрузки Imax:

```
Смартреле Р3-5
                     от 0.4 до
                                 5 А, шаг 0.02А;
                     от 2.0 до 25 А, шаг 0.1А;
Смартреле РЗ-25
                     от 5.0 до 50 А, шаг 0.2А;
Смартреле Р3-50
Смартреле РЗ-250
                     от 20 до 250 А, шаг
                                           1A;
Смартреле Р3-500
                     от 40 до 500 А, шаг
                                           2A:
Смартреле РЗ-900
                     от 80 до 900 А, шаг
                                           4A.
```

- 3.3 Время задержки срабатывания защитного отключения **Тзад** регулируемое в пределах от 3 до 250 сек. Время задержки срабатывания защитного отключения при перегрузке по току зависит от величины токовой перегрузки в аварийном режиме в соответствии с графиком рис.5.
- 3.4 Время задержки срабатывания защитного отключения при пуске электроустановки **Тп** регулируемое в пределах от 3 до 250 сек.

- 3.5 Время задержки срабатывания защитного отключения при обрыве фазы фиксировано и составляет 3 +0,2 сек.
- 3.6 Реле сохраняет в памяти значения контролируемых токов и причину последнего по времени аварийного отключения.
- 3.7 Реле регистрирует и сохраняет в памяти неограниченное время информацию о количестве и причинах аварийных отключений. Максимальное число регистрируемых аварийных отключений 255.
- 3.8 Реле имеет режим автоматического сброса защиты через заданный интервал времени **Тапп**, регулируемый в пределах от 1 до 255 минут.
- 3.9 Реле коммутирует электрическую цепь переменного тока от 0,01 до 1 А при напряжении от 180 до 460 В.
- 3.10 Питание реле осуществляется от сети переменного тока напряжением в пределах от 180 до 460 В частотой (50±2) Гц.
 - 3.11 Мощность, потребляемая реле от сети не более 0.6 Вт.
 - 3.12 Габаритные размеры реле не более 35 х 95 х 42 мм (без датчиков тока)
- 3.13 Габаритные размеры датчиков тока реле (внутренний х внешний диаметр х высота, мм):

```
Смартреле Р3-5- 10 x 40 x 15;Смартреле Р3-25- 10 x 40 x 15; *Смартреле Р3-50- 24 x 54 x 18;Смартреле Р3-250- 42 x 76 x 20;Смартреле Р3-500- 42 x 76 x 20;Смартреле Р3-900- 65 x 112 x 22.
```

3.14 Масса в комплекте с датчиками тока:

Смартреле Р3-5 - не более 0.25 кг; Смартреле Р3-25, Р3-50 - не более 0.35 кг; Смартреле Р3-250, Р3-250 - не более 0.55 кг; Смартреле Р3-900 - не более 0.95 кг.

3.15 Средний срок службы - не менее 5 лет.

4. КОМПЛЕКТНОСТЬ

В комплект поставки реле входят:

Реле (с комплектом датчиков тока)	- 1 шт.
Паспорт на реле ЮИПН 411711.072 -01	- 1 шт.
Пульт управления ПУ-02Л	- 1 шт. *
Пульт управления ПУ-02С	- 1 шт. *
Пульт управления Смарт ПУ-04	- 1 шт. *
УСИМ ЮИПН 460000.001	- 1 шт. *
Адаптер USB ЮИПН 203127.001	- 1 шт. *
Адаптер Ethernet ЮИПН 203127.002	- 1 шт. *
Адаптер RS-485 ЮИПН 203127.004	- 1 шт. *
Адаптер беспроводной сети А2 ЮИПН 203127.005	- 1 шт. *

Примечание:

^{*} *Примечание*: по требованию заказчика может комплектоваться датчиками типоразмера 24 x 54 x 18 мм.

^{*} Дополнительные устройства, изготавливаемые по требованию заказчика, поставляются отдельно по самостоятельному заказу.

5. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

- 5.1 Общий вид реле, расположение его органов индикации показаны на рис.1.
- 5.2 Габаритные и установочные размеры реле показаны на рис. 2.
- 5.3 Общий вид, габаритные размеры пультов управления ПУ-02Л, ПУ-02С, Смарт ПУ-04 показаны на рис. 3.
- 5.4 Схема включения реле в систему управления электродвигателя показана на рис. 4.
- 5.5 Реле состоит из электронного блока (рис.1а) с шестью винтовыми клеммами 1 6 для подключения и блока датчиков тока 17 (рис.1б), соединенных между собой двухпроводной линией 18 с разъемным соединением посредством двух клемм 4 и 5. Посредством трех датчиков тока 14, 15, 16 реле осуществляет контроль токов, протекающих в трех фазах питания контролируемого электродвигателя.
- 5.6 Электронный блок реле обрабатывает данные, поступающие от блока датчиков, о значениях тока в фазах электродвигателя, сравнивает эти значения с заданными уставками и выдает команду на управления исполнительным контактом реле, обеспечивающим отключение электродвигателя в аварийном режиме.
- 5.7 Питание реле обеспечивается наличием переменного напряжения сети от 180 до 460 В между его клеммами 1 "Ф" и 3 "Н".
- 5.8 На передней панели реле расположены пять световых индикаторов 7 11 для отображения режима его работы, бесконтактный разъем 13 "X1", предназначенный для подключения пультов и других внешних устройств (цифровой вход/выход) и оптический инфракрасный (ИК) приемопередатчик 12.
- 5.9 Индикация нормального режима электродвигателя по току осуществляется индикатором 7 "РАБОТА". Если двигатель отключен, индикатор "РАБОТА" светится непрерывно. Если двигатель включен, индикатор работает в прерывистом режиме (мигает). Цепь исполнительного контакта реле (клеммы 1 "Ф" и 2 "К") при этом замкнута.
- 5.10 При выходе режима по току за пределы уставок реле переходит в режим АВАРИЯ, индикатор "РАБОТА" гаснет и включается один из индикаторов 8, 9, указывающих причину аварии, с одновременным размыканием цепи исполнительного контакта (клеммы 1 "Ф" и 2 "К"), что приводит к отключению контактора КМ и электродвигателя.
- 5.11 Деблокировка защиты и возврат реле в исходное состояние, при необходимости, осуществляется снятием напряжения сетевого питания с реле на время более 1 сек.

Для обеспечения возможности деблокировки защиты в цепи питания реле может быть установлен выключатель SF (рис.4).

5.12 Пульт управления ПУ-02Л (рис.3а) с автономным питанием обеспечивает дистанционное считывание информации от реле и ее отображение на экране цифрового дисплея, а также обеспечивает программирование уставок защит.

Связь пульта с реле осуществляется по оптическому беспроводному каналу связи, который обеспечивается инфракрасным приемопередающими элементами 6,7. Дальность связи находится в пределах от 5 до 20 см.

Один пульт может работать с любым количеством реле.

5.13 Пульт управления ПУ-02С (рис.3б) с автономным питанием обеспечивает дистанционное считывание информации от реле и ее отображение на экране цифрового дисплея, а также обеспечивает программирование уставок защит. Реле и пульт обмениваются информацией по каналу связи, который обеспечивается шлейфом 8 с бесконтактным зондом 10, обеспечивающим электробезопасность при работе.

Один пульт может работать с любым количеством реле.

5.14 Реле работает совместно с пультом управления Смарт ПУ-04 (изготавливается и поставляется по отдельному заказу), обеспечивающими отоб-

ражение настроек реле, информации о текущих и аварийных режимах контролируемой электроустановки, а так же программирование уставок реле.

Пульт предназначен для стационарной установки в электрических шкафах совместно с одним реле. Один пульт обслуживает один прибор, с которым он совместно установлен.

Пульт изготавливается и поставляется по заказу потребителя только в комплекте с каждым экземпляром реле.

- 5.15 Порядок работы реле с персональным компьютером ПК (ноутбуком) описан в паспорте на Адаптер USB ЮИПН 203127.001 ПС, в паспорте на систему радиального интерфейса удаленного сбора данных «СИРИУС» ЮИПН 421433.011 ПС.
- 5.16 Порядок работы реле с устройством УСИМ описан в паспорте на Устройство Сбора Информации Мобильное ЮИПН 460000.001 ПС.
- 5.17 Порядок работы реле с адаптером RS-485 описан в паспорте на Адаптер RS-4852ЮИПН 203127.004 ПС.
- 5.18 Порядок работы реле с адаптером Ethernet описан в паспорте на Адаптер Ethernet ЮИПН 203127.002 ПС.
- 5.19 Порядок работы реле с адаптером А2 описан в паспорте на Адаптер беспроводной сети А92 ЮИПН 203127.005 ПС.

6. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 6.1 Во избежание поражения электрическим током все виды работ по монтажу, подключению и техническому обслуживанию реле допускается производить только при полном снятии напряжения в сети.
 - 6.2 Запрещается эксплуатация реле во взрывоопасных помещениях.
- 6.3 Не допускается длительное превышение тока в цепи управления реле сверх допустимого (1 A), что может привести к выходу его из строя. В связи с этим при работе с контакторами V-VI габарита рекомендуется устанавливать в схему управления промежуточное реле.
- 6.4 Запрещается установка датчиков тока реле на не изолированные провода (шины). Не рекомендуется установка датчиков в непосредственной близости от контактных соединений, которые могут нагреваться во время работы и привести к перегреву датчиков.

7. РАЗМЕЩЕНИЕ И МОНТАЖ РЕЛЕ

- 7.1 Реле рекомендуется устанавливать в электрических шкафах совместно с другим пусковым электрооборудованием. Для крепления в его корпусе предусмотрены два крепёжных отверстия и крепление на DIN-рейку.
- 7.2 Подключение реле производится в соответствии со схемой, приведенной на рис.4. Возможны другие варианты подключения реле.
- 7.3 При затруднениях при установке датчиков (недостаточный внутренний диаметр) следует учитывать, что датчики тока могут устанавливаться в любом месте электрической цепи питания электроустановки, например, до или после вводного автоматического выключателя, до или после вводных клемм контактора. По желанию заказчика реле могут комплектоваться датчиками большего размера.

Положение датчика на токоведущем проводе может быть произвольным и не влияет на работу реле.

7.4 Электронный блок реле и блок датчиков тока при необходимости могут устанавливаться в раздельных шкафах (например, датчики – в силовом шкафу, реле – в шкафу автоматики).

В этом случае может потребоваться увеличение длины соединения между датчиками тока и корпусом реле.

Потребитель имеет право самостоятельно нарастить соединительную линию, разъединив клеммы 4,5 реле (рис.1), если это необходимо по техническим соображениям.

Допускается увеличение длины соединения до 20 м однотипным проводом (ШВВП 2х0.5) или витой парой проводов сечением 0.5 – 0.75 мм с соблюдением исходной полярности соединения.

Линия соединения должна быть надежно изолирована от других токоведущих частей и земли.

При последующих заказах по Вашему требованию возможно изменение длины линии в заводских условиях при изготовлении прибора.

8. ПОРЯДОК РАБОТЫ

- 8.1 При включении напряжения сетевого питания реле готово к работе.
- 8.2 При нормальной работе электроустановки светится желтый индикатор «РАБОТА».
- 8.3 В случае выхода режима за пределы уставок реле производит защитное отключение путем размыкания контактов исполнительного реле, индикатор «РАБОТА» гаснет, включается один из индикаторов:

 - **Обрыв фазы** отключение по обрыву фазы; **Перегрузка** отключение по перегрузке по - отключение по перегрузке по току;

При аварийном отключении по обрыву фазы мигающие индикаторы [А], [В], [С] указывают отсутствующую фазу.

- 8.4 Для сброса защиты отключите питание реле выключателем SF на время 2-3 сек, после чего возможно повторное включение электроустановки кнопкой «ПУСК».
- 8.5 Если необходимо проконтролировать текущий режим электроустановки, выяснить причину аварийного отключения или изменить режимные уставки, воспользуйтесь пультом управления ПУ-02Л, ПУ-02С или Смарт ПУ-04.
 - 8.6 Порядок работы с пультом ПУ-02Л.
- 8.6.1. Проверьте состояние элементов питания пульта, для чего нажмите и отпустите кнопку ПИТАНИЕ, на экране дисплея должно появиться сообщение:

ПУЛЬТ 02

Если изображение не появляется или оно недостаточно контрастно, то это свидетельствует о чрезмерном разряде элементов питания пульта, и их необходимо заменить. Не нужно удерживать кнопку ПИТАНИЕ в нажатом состоянии во время сеанса работы. По окончании сеанса работы питание пульта отключается автоматически через 3-4 секунды.

- 8.6.2 Поднесите пульт к реле на расстояние 5-20 см, совместив ось ИК излучателя реле и ИК – приемника пульта, нажмите кратковременно кнопку ПИТАНИЕ. Появится знак * в правом верхнем углу индикатора пульта информация считана. На дисплее отображается информация страницы № 0.
- 8.7 Отображаемая информация размещается на пяти страницах дисплея, последовательное переключение которых осуществляется с помощью кнопок «ВЫБОР СТРАНИЦЫ» в прямом или обратном порядке.

- 8.7.1 На странице № 0 дисплея отображается:
- 8.7.1.1 Текущее состояние электроустановки: СТОП (отключено), РАБОТА (режим в норме) или АВАРИЯ (произошло аварийное отключение), или ПЕРЕРЫВ (отключено по программе)
 - 8.7.1.2 Тип и номинал реле (в режиме СТОП или РАБОТА).
- 8.7.1.3. В режиме АВАРИЯ указывается предполагаемая причина аварийного отключения:

НЕТ ФАЗЫ - отключение в результате обрыва фазы -**I>lmax** - перегрузка по току

- 8.7.2 На странице № 1 отображается:
- 8.7.2.1 В режиме «СТОП» или «РАБОТА» текущие значения фазных токов **Ia**, **Ib**, **Ic** и дисбаланса **Di** электроустановки в Амперах.
- 8.7.2.2 В режиме «АВАРИЯ»- значения фазных токов и дисбаланса на момент, предшествующий аварийному отключению.
- 8.7.3 На странице № 2 отображается значения уставок защиты по току перегрузки **Imax в** Амперах, уставок задержки срабатывания защитного отключения **Тзад** и **Тп** в единицах секунд, времени до автоматического сброса защиты **Тапп** в единицах минут. Страница № 3 пульта зарезервирована.
- 8.7.4 На странице № 4 отображаются значения четырёх счётчиков аварийных отключений, условно обозначенных символами:
 - -О число отключений по обрыву фазы
 - -П число отключений по перегрузке по току

8.8. Программирование реле

Программирование реле заключается в установке требуемых значений режимных уставок защиты. Могут быть установлены следующие параметры:

- Imax порог срабатывания защиты по току перегрузки, А
- Тзад.- время срабатывания защитного отключения, в секундах:
- **Тп** время задержки срабатывания защитного отключения при пуске в секундах;
- Тапп время в минутах до автоматического сброса защиты. Если установлено значение Тапп=0, то эта функция не действует, сброс защиты может осуществляться только снятием с устройства напряжения сетевого питания;

Порядок программирования следующий:

- 8.8.1 Произведите считывание информации с реле в соответствии с п.8.6.2. Удерживайте пульт на связи с реле до окончания сеанса работы.
- 8.8.2 Последовательным нажатием кнопки «ВЫБОР ПАРАМЕТРА» на пульте выберите параметр, который необходимо изменить.
- 8.8.3 С помощью кнопок «ВЫБОР СТРАНИЦЫ» установите требуемые значения параметра (отображается в правом нижнем углу индикатора).
- 8.8.4 Запись установленного значения параметра будет закончена, когда значение, отображаемое в левом нижнем углу индикатора, совпадёт с установленным.
- 8.8.5 Нажатием кнопки «ВЫБОР ПАРАМЕТРА» пульта выберите следующий параметр, который необходимо изменить.

Повторите требования п. 8.8.3, п. 8.8.4 для установки значения параметра.

8.8.6 Для выхода из режима программирования нажмите и отпустите кнопку «ПИТАНИЕ», при необходимости повторите п.п.8.8.1 ...8.8.5 для изменения других параметров.

8.9 Сброс счётчиков аварий.

Сброс (обнуление) счетчиков аварийных отключений реле необходимости производится в следующем порядке:

- 8.9.1 Поднесите пульт к реле на расстояние 5-20 см, совместив ось ИК излучателя пульта и ИК приемника реле.
- 8.9.2 Нажмите кнопку «ВЫБОР ПАРАМЕТРА» на пульте и, удерживая ее, нажмите и отпустите кнопку «ПИТАНИЕ». На дисплее в верхней строке появятся символы:

О П Н Д – условные обозначения счетчиков аварии.

Дождитесь, пока все счетчики во второй строке дисплея не обнулятся.

8.10 Работа с пультом управления ПУ-02С.

Работа с пультом управления ПУ-02С аналогична работе с пультом ПУ-02Л. Перед началом работы нужно соединить реле с пультом с помощью соединительного шлейфа.

8.11 Работа с пультом управления Смарт ПУ-04.

Работа с пультом аналогична работе с пультом ПУ-02Л. Перед началом работы пульт нужно установить в соответствии с рисунком 2 из паспорта на Смарт ПУ-04 ЮИПН 411711.030 ПС.

9. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует нормальную работу реле при соблюдении условий эксплуатации в течение 36 месяцев с момента продажи.

Рекламации предъявляются потребителем предприятию – изготовителю согласно действующему законодательству.

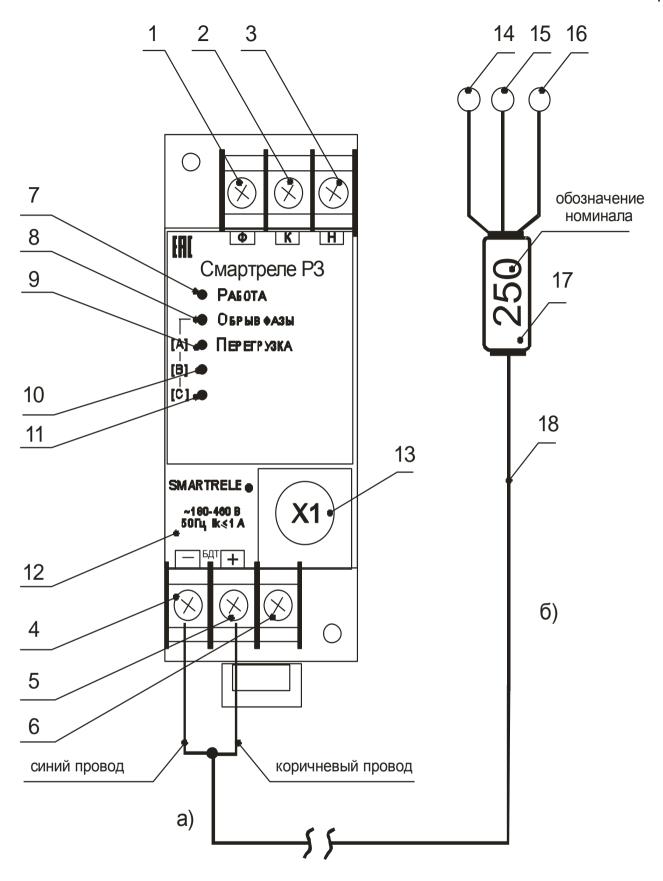
Изготовитель оставляет за собой право вносить в конструкцию реле изменения, не ухудшающие его технические характеристики.

10. МАРКИРОВКА

Маркировка наименования реле «Смартреле РЗ» нанесена на его лицевой панели.

Маркировка номинала реле нанесена на корпусе блока датчиков тока.

Серийный номер реле нанесен на его задней панели.


11.СВЕДЕНИЯ О СОДЕРЖАНИИ ДРАГОЦЕННЫХ МЕТАЛЛОВ

Реле драгоценных металлов и сплавов не содержит.

12. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Реле типа Смартреле Р3	_, заводской №	
выпускаемое по ТУ 3425-001-79200647-2014, эксплуатации.	проверено и признано	годным к
Дата изготовления		
Штамп ОТК		

Подпись лица, ответственного за приемку

а) - электронный блок реле

б) - блок датчиков тока реле

Рисунок 1 – внешний вид реле

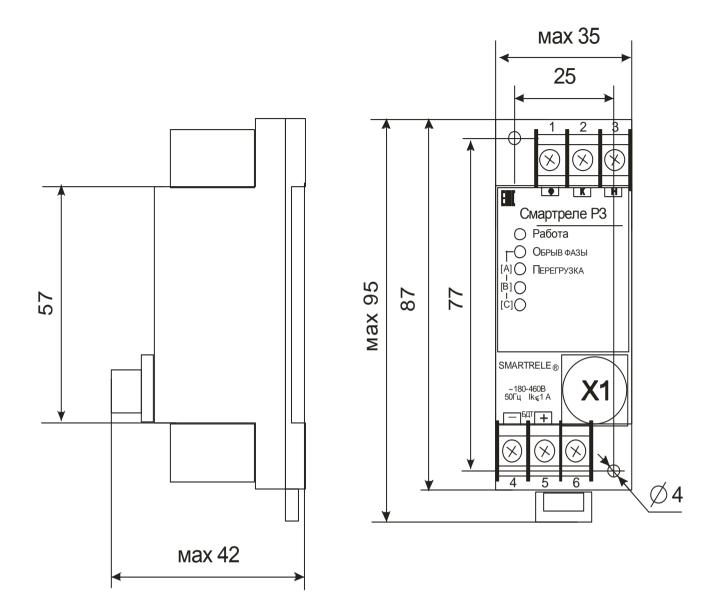


Рисунок 2 – габаритные и установочные размеры электронного блока реле

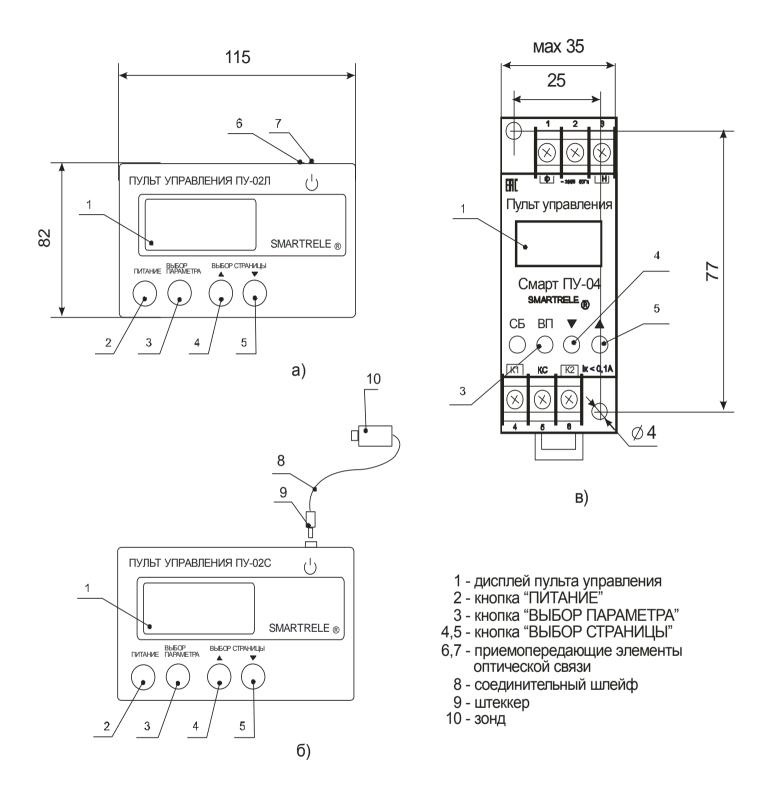


Рисунок 4 - типовая схема вкключения реле в систему управления электроустановки

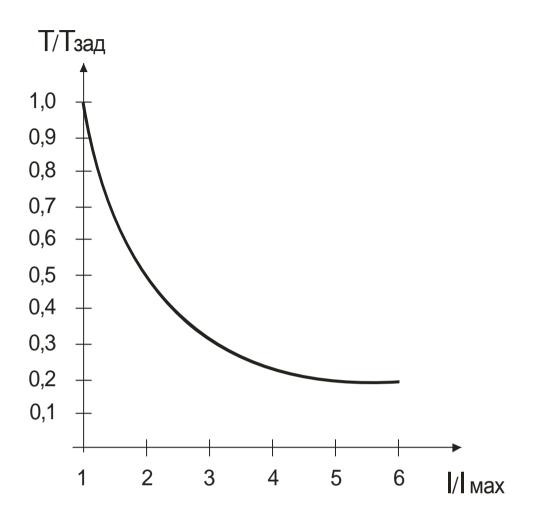


Рисунок 5 – токо - временная характеристика защитного отключения реле

ЗАКАЗАТЬ: СМАРТРЕЛЕ РЗ